Survey Experiments

POLSCI 4SS3 Winter 2024

Last week

- We discussed and explored techniques to reduce sensitivity bias
- Some techniques are observational (e.g. randomized response)
- Some techniques are **experimental(e.g. list** experiment)
- Today: Discuss surveys using experiments more generally

Survey experiments

Return to parallels

TheoryEmpiricsModelData strategy

Inquiry Answer strategy

Return to parallels

TheoryEmpiricsModelData strategy

Inquiry Answer strategy

Data strategy

Inquiry

Observational Experimental

Descriptive

Causal

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	
Causal		_

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment

Causal

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment
Causal	Panel survey	

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment
Causal	Panel survey	Survey experiment

Survey experiments are **experimental** data strategies that answer a **causal** inquiry

Survey experiments

- Assign respondents to **conditions** or **treatments**
- Usually by random assignment
- Each condition is a different version of a question or vignette
- Goal: Understand the effect of different conditions on the outcome question if interest
- How does this work?

Taking a step back

- Two ways to express functional relations in a **model**
- 1. Structural causal models
- 2. Potential outcomes framework

Taking a step back

- Two ways to express functional relations in a **model**
- 1. Structural causal models
- 2. Potential outcomes framework

Potential outcomes framework

Notation

- *i*: unit of analysis (e.g. individuals, schools, countries)
- $Z_i = \{0, 1\}$ indicates a condition (1: Treatment, 0: Control)
- $Y_i(Z_i)$ is the individual **potential outcome**
- $Y_i(0)$: Potential outcome under control
- $Y_i(1)$: Potential outcome under treatment

Toy example

ID	Female	$Y_i(1)$	$Y_i(0)$
1	0	0	0
2	0	1	0
3	1	1	0
4	1	1	1

• $au_i = Y_i(1) - Y_i(0)$ is the individual causal effect

Toy example

ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$
1	0	0	0	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

• $au_i = Y_i(1) - Y_i(0)$ is the individual causal effect

• $au = (1/n) \sum_{i=1}^n au_i = E[au_i]$ is the inquiry or estimand

• We call au the **Average Treatment Effect (ATE)**

Notation chart

Greek

- Letters like µ denote
 estimands
- A hat $\hat{\mu}$ denotes **estimators** A bar $ar{X}$ denotes an

Latin

- Letters like X denote actual variables in our data
- A bar \bar{X} denotes an estimate calculated from our data

$$X o ar{X} o \hat{\mu} \xrightarrow{ ext{hopefully!}} \mu$$

 $\mathbf{Data} \to \mathbf{Estimate} \to \mathbf{Estimator} \xrightarrow[]{\mathrm{hopefully!}} \mathbf{Estimand}$

Challenge

- We want to know the ATE au
- This requires us to know $au_i = Y_i(1) Y_i(0)$
- But when we assign treatment conditions we only observe one of the potential outcomes $Y_i(1)$ or $Y_i(0)$
- Meaning that τ_i is impossible to calculate!
- This is the **fundamental problem of causal inference**

Continuing the example

Unobserved

ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$
1	0	0	0	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

• We can randomly assign conditions Z_i

Continuing the example

		Unobserved			Obse	rved
ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$	Z_i	Y_i
1	0	0	0	0	1	0
2	0	1	0	1	0	0
3	1	1	0	1	1	1
4	1	1	1	0	0	1

- We observe outcome Y_i depending on assigned condition ${\cal Z}_i$
- We can use this to approximate the ATE with an **estimator**

Estimator for the ATE

• Additive property of expectations:

$$au = E[au_i] = E[Y_i(1) - Y_i(0)] = \underbrace{E[Y_i(1)] - E[Y_i(0)]}_{i=1}$$

Difference in means between potential outcomes

• We cannot calculate this, but we can calculate

$$\hat{\tau} = \underbrace{E[Y_i(1)|Z_i=1] - E[Y_i(0)|Z_i=0]}_{\text{Difference in means between conditions}}$$

Randomization

- If we can claim that units are selected into conditions Z_i independently from potential outcomes
- Then we can claim that $\hat{\tau}$ is a valid approximation of τ
- In which case we say that $\hat{\tau}$ is an **unbiased** estimator of the ATE
- Random assignment of units into conditions guarantees this *in expectation*

Discussion

Tomz and Weeks (2013): "Public Opinion and the Democratic Peace"

- Surveys in the UK (n=762) and US (n=1273)
- April-May 2010
- Outcome: Support for military strike
- 2x2x2 survey experiment

Vignette design UK

- Political regime: F Democracy/not a democracy
- Military alliances: Ally/not an ally
- Military power: As strong/half as strong

Political regime: Democracy/not a democracy

US

- Military alliances: Ally/not an ally
- Trade: High level/not high level

Results for democracy

TABLE 1. The Effect of Democracy on Willingness to Strike

	United Kingdom	United States	United States
	(between)	(between)	(within)
Not a democracy	34.2	53.3	50.0
Democracy	20.9	41.9	38.5
Effect of democracy	_13.3	_11.4	
95% C.I.	(-19.6 to -6.9)	(-17.0 to -5.9)	(-14.7 to -8.3)

Results for other factors

TABLE 2.The Effect of Alliances, Power,and Trade

	United Kingdom	United States
No military alliance Military alliance <i>Effect of alliance</i> 95% C.I.	30.7 25.1 -5.7 (-12.0 to 0.6)	50.2 45.1 -5.1 (-10.7 to 0.5)
Half as strong As strong <i>Effect of strength 95% C.I.</i>	29.3 26.3 -3.0 (-9.4 to 3.2)	
No high trade High trade <i>Effect of high trade</i> 95% C.I.		50.3 45.1 -5.2 (-10.6 to 0.2)

Eggers et al (2017): "Corruption, Accountability, and Gender"

Constituency A

This is a marginal constituency won narrowly by **the Conservatives** at the last election. Based on polls, the **only other party with a chance of winning** this seat are **Labour**. Here are the details of the current **Conservative** MP and the **Labour** challenger:

Main challenger:

Conservative 64 years old Female Formerly a business manager Labour 62 years old Female Formerly a business manager

Last year, the current MP was found to have inappropriately claimed over £10,000 on expenses.

If you were living in this constituency at the next general election, who would you vote for?

- The current Conservative MP
- The Labour challenger
- The Liberal Democrat candidate
- A candidate from another party
- 🔘 No one, I would not vote

Profile variants

Factor	MP	Challenger
Party	Labour, Conservative	Labour, Conservative, Liberal Democrat
Age	45, 52, 64	40, 52, 64
Gender	Male, Female	Male, Female
Previous job	General practitioner, journalist, political advisor, teacher, business manager	General practitioner, journalist, political advisor, teacher, business manager

Results

Next Week Convenience Samples Focus on: Should findings generalize?

Break time!

